

Using Machine Learning to Enhance Flash Endurance & Latency

Cloud Zeng LiteOn/Storage/NVM Lab

Flash Memory Summit 2017 Santa Clara, CA

Challenges in Error Recovery

- During SSD Service Time:
 - P/E Cycle, Data Retention, Read Disturb
 - Critical R/W Condition(Temperature)
- Decoding Strategy:
 - Read Retry
 - Soft Decoding
 - ...
- Challenges:
 - Keep High Reliability & Low Latency under Variant Operation Condition

Input Parameters:

- Some factors will affect NAND Flash Status. (P/E Cycle, Retention Time, Read Count, Temperature...)
- Some information from NAND Flash are also collected as Input Parameters (Program/Erase Time, ...)

Status Prediction:

- Our target is to predict NAND Flash Status (Ex: Optimal Read Level, Error Recovery Flow) by Input Parameters.

Optimal Decoding Parameters

Example : Binary LDPC - MSA

1. Read Level for Hard Bit → Minimize Error Bits

2. Read Level for Soft Bit & LLR Value → Maximize the Decoding Capability

• Optimal Read Level & LLR Prediction

- Maximize Decoding Capability. Extend the Endurance
- Vary with Operation Condition (P/E Cycle, Retention Time, Read Count, Temperature...)

Memory Error Recovery Flow - Prediction

- Error Recovery Flow Prediction
 - Throughput/Latency Control, End of Life Prediction

Visual Illustration - Error Recovery Flow

Visual Illustration – Soft Decode

Parameter Optimization with ML

Category	ltem	Description	Remark
P/E	Cycle	0, 1000,~	
	Temperature	(Random)	
	Dwell	(Random)	
Test Item	Data Retention	0, 1, ~ (Days)	Room Temperature
	Data Retention	0, 1, ~ (Days)	High Temperature
	Read Disturb	0, 1000, ~	

- A Smart Error Recovery Scheme is developed by Machine Learning
- This Scheme can be applied to variant operation condition (combination of {PE, DR, RD, Temperature})
- This Scheme can extend the endurance and reduce the latency

Endurance with Hard Decoding

- Our Error Recovery Scheme use ML to find Optimal Read Level for variant operation conditions (combination of {PE, DR, RD, Temperature})
- 5x Extension for Baking Time & 2x Extension for P/E Count

Memory Endurance with Hard/Soft Decoding

 Proposed Error Recovery Scheme with only Hard Decode is still better than Traditional Read Retry + Soft Decode in Decoding Coverage

Throughput/IOPS Comparison

Flas

Memory

SUMMIT

 Proposed Error Recovery Scheme always has less read latency compared with Traditional Error Recovery Scheme

Throughput with Future Status Prediction

Memory

SUMMIT

Fla

 Read Performance Drop can be further reduced with Future Status Prediction

THANK YOU! Any questions?

Come by LITEON **Booth# 621** for Live Demo! Learn about Machine Learning & TSV Technology

Get a chance to win a special prize

LITEON®

0 0 0 0 0 0 0 0 0